Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions.

نویسندگان

  • Antonia Praetorius
  • Jérôme Labille
  • Martin Scheringer
  • Antoine Thill
  • Konrad Hungerbühler
  • Jean-Yves Bottero
چکیده

The heteroaggregation of engineered nanoparticles (ENPs) with natural colloids (NCs), which are ubiquitous in natural surface waters, is a crucial process affecting the environmental transport and fate of ENPs. Attachment efficiencies for heteroaggregation, α hetero, are required as input parameters in environmental fate models to predict ENP concentrations and contribute to ENP risk assessment. Here, we present a novel method for determining α hetero values by using a combination of laser diffraction measurements and aggregation modeling based on the Smoluchowski equation. Titanium dioxide nanoparticles (TiO2 NPs, 15 nm) were used to demonstrate this new approach together with larger silicon dioxide particles (SiO2, 0.5 μm) representing NCs. Heteroaggregation experiments were performed at different environmentally relevant solution conditions. At pH 5 the TiO2 NPs and the SiO2 particles are of opposite charge, resulting in α hetero values close to 1. At pH 8, where all particles are negatively charged, α hetero was strongly affected by the solution conditions, with α hetero ranging from <0.001 at low ionic strength to 1 at conditions with high NaCl or CaCl2 concentrations. The presence of humic acid stabilized the system against heteroaggregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute toxicity of titanium dioxide nanoparticles in Daphnia magna and Pontogammarus maeoticus

Titanium dioxide nanoparticles (nTiO2) are the world's second most widely consumed nanomaterial and large quantities of this material enters the aquatic ecosystem annually. Therefore, understanding the effects of nTiO2 on aquatic organisms is very important. The present study used Daphnia magna as a model freshwater organism and Pontogammarus maeoticus as a brackish water organism to evaluate s...

متن کامل

Response of Strawberry cv. Sabrina under Deficit Fertigation Conditions to Foliar Application of Titanium Dioxide Nanoparticles

Strawberry (Fragaria × ananassa Dutch) is a widely grown fruit crop in the world due to its high aroma, taste, and nutritional value. In this study, the effect of foliar application of titanium dioxide nanoparticles on phytochemical modifications of strawberry cv. Sabrina under deficit fertigation conditions was investigated. The interaction effect of titanium dioxide nanoparticles (0, 6 and 12...

متن کامل

A case study of aggregation behaviors of titanium dioxide nanoparticles in the presence of dodecylbenzene sulfonate in natural water.

The present work aims to ascertain the mechanisms of surfactant (dodecylbenzene sulfonate; DBS) effects on the aggregation behaviors of TiO2 nanoparticles (TiO2-NPs) in natural water samples. Aggregation experiments were conducted at a TiO2-NPs concentration of 10mg/L in deionized water and in natural water samples via dynamic light scattering and Zeta potential determination. Average attachmen...

متن کامل

Arsenic Removal from Aqueous Solution Using Titanium Dioxide Nanoparticles (Anatase)

Background and Objectives: Groundwater sources, as strategic sources of water supply, are of particular importance for human beings. Arsenic is a toxic and carcinogenic contaminant that has been reported to be widely found in groundwater sources. In recent years, adsorption property of nanoparticles has been used to remove arsenic. The present study was performed with the aim of assessing the a...

متن کامل

Effect of Methanol and Titanium Dioxide Nanoparticles on Phytochemical Properties of Artichoke (Cynara scolymus L.)

Extended Abstract Introduction and Objective: In recent years, studies have focused on the use of new compounds that can be synthesized inside the plant and increase the photosynthetic efficiency of the plant. Some of these compounds include micronutrients and alcohols. Alcohols such as methanol as a carbon source will increase photosynthetic efficiency and improve plant growth parameters. Tit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 48 18  شماره 

صفحات  -

تاریخ انتشار 2014